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Abstract. The storage capadty of an autoassociative memory with extmmely di- 
luted connectivity and with threshold-linear elementary units is studied in its depen- 
dence on the graded structure and on the sparseness of the coding scheme, and on 
the form of the learning rule used. As the coding becomes spane, more pattans can 
be stored, and the difference in capadty (measured for a given number of modifi- 
able synapses per unit) between fully connected and highly diluted systems vanishes. 

their post-synaptic factor, further increase the number of patterns that can be stored 
by making their retrieved representation even sparser. 
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The ability of neurons to produce graded responses in the form of continuously variable 
firing rates might be exploited in the processing of information in the brain. In cases, 
for example, in which a complex signal is coded in the form of short-time averaged 
firing rates of a bundle of axonal fibres, quite clearly the amount of information that 
can be transferred increases as the rates are allowed to take more values. Studying 
the implications of this potentially advantageous feature requires, however, an under- 
standing of the factors limiting the resolution available in the relevant systems. This 
is beyond current knowledge. A specific framework in which the question may be 
tractable is that of associative memories, when conditions are such that the dominant 
factor affecting the resolution is the effective noise induced by extensive memory load- 
ing. In particular it is possible to study how the storage capacity of an autoassociative 
network of graded-response neurons varies with the code used to store information. 

Threshold-linear formal neurons have been proposed for this purpose [l], and the 
storage capacity of a fully connected model network with a covariance learning rule 
has been studied [2]. The results are extended here to the case of a network with 
extremely diluted connectivity, and with a more general learning rule. 

Consider an autoassociative net of N neurons, in which each cell receives 011 average 
inputs from the axon collaterals of C others, and suppose C is very large (in fact, the 
limit C - 03 shall be assumed) but fixed, for example determined by constraints 
on the physical size of a neuron. Different biological (or artificial) systems might be 
modelled by giving different values for N ,  e.g. perhaps N SI 20C for the CA3 region 
of the Hippocampus [3]. What are the effects of varying the size of the net? Does 
a larger net perform better, in any sense? Or,  on the contrary, is a more compact 
connectivity necessary to harness beneficial feedback effects? A partial answer may 
come from a comparison of two limit cases. If N = C + 1,  as in the case previously 
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studied [2], feedback loops dominate the dynamical evolution. If N E exp(C), i.e. 
the highly diluted case [4], the net is effectively a feedforward system. Formal models 
predict somewhat different behaviours in the two situations, in particular as concerns 
capacity measures. The remarkable fact has been noted [5] ,  however, that systems 
of binary units, endowed with a covariance learning rule, in the limit of very sparse 
coding can be described by the same equations both in the fully connected and in the 
highly diluted cases. If this result applies also in a range of moderately sparse coding, 
and carries over to other types of elementary units and more general coding schemes, 
i t  would suggest that the presence or absence of feedback may not be a relevant factor 
in the performance of certain biologically interesting networks, at least as measured by 
their capacity. The role of feedback in determining other features, such as the basins 
of attraction of retrieval states, which appear t o  have a more delicate dependence 
on the details of the dynamics, may be less meaningfully investigated with simplified 
formal models. 

The model and the notation used are the same as in 121. Positive variables Vi, 
i = 1,. . . , N denote the short-time averaged firing rate of N formal units representing 
cortical pyramidal cells. The synaptic connections between these units are taken to 
encode information about p patterns of firing activity. The activity of unit i while 
pattern p = I , .  , . , p is being learned is denoted as qr . For the purpose of evaluating 
storage capacities, the q are supposed to be drawn at random, independently for each 
p and i, from a common probability distribution P,,. The average value of r )  over P,, 
is written a. 

Inputs affecting the cells are integrated in the ‘membrane potentials’ hi, which are 
written [2] 

J;  stands for the change in the efficacy of the synaptic connection between cells i and 
j after encoding the patterns, and the first term in the right-hand side of the above 
equation represents the components of post-synaptic potentials from other units due to 
these modifications in the efficacies. The second term in hi represents ext,ernal inputs 
tending to elicit some of the encoded pat,terns, each with relative strengt,b s”. A variety 
of other inputs is lumped together in the last term, including uniform (not pattern- 
specific) external stimulation, interactions mediated by inhibitory interneurons, and 
uit: curripunen~s UL mreci excnanges uue b u  va)c.iiiit. s y ~ i d p ) ~ i c  C I I I C ~ C ~ C ~ ,  as ~ricy wrre 
before encoding the patterns, The  approximation is made of considering this term as 
dependent only on the average activity of the N units (and on external conditions). An 
important feature of the model [2] is that although the b term may have a complicated 
form, it does not include any information about the encoded patterns. As a result, it 
contributes in setting the overall scale of the network response, but  it does not affect 
its storage capacity. 

In the version of the model considered here, the connectivity through modifiable 
synapses is sparse and asymmetric. ,Each efficacy change J;  is written 

II. ~._._..~~~-I.  .I- , I - ~ ~ .  3~~~ I ^  L...,:-. I : _  -CA-.!.- L L ^ _ _  ... ̂.. 
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where the factor c i j ,  which specifies whether the modifiable synapse is present or not, 
is drawn at random from the distribution [4] 

(3) PJC) = - S ( C  - 1) + [l - C / ( N  - 1)]6(c). 
N - 1  

The modification due to each pattern is written as the product of a pre-synaptic factor, 
proportional to the deviation of the activity from its average, times a post-synaptic 
factor which is just ageneric function F ( q )  of the post-synaptic activity. In particular, 
to compare with the fully connected symmetric network of [Z], the case considered first 
will be F(q)  = q/a-l ,  so that  the synaptic modification takes the form of a covariance 
rule [6], as studied in most symmetric models [7-91. 

The dynamics is modelled by assuming that each 6 is updated a t  random inter- 
vals, with a fixed probability per unit time. The updated state is determined by the 
potential hi according to a threshold-linear transfer function: 

where g is a gain parameter and Thr a threshold. 
The microscopic evolution of the activities depends on the details of the initial 

conditions, on the updating order and on the quenched assignments { c i j }  and { q r } .  
Averaging over these factors and over single units one can describe the state of the 
system with macroscopic quantities such as the correlations with the encoded patterns 

the overall mean activity 

and the mean square activity 

While the equations describing the evolution of the above quantities are in gen- 
eral quite complicated, only the simple situation is considered here, in which (i) the 
thermodynamic limit with high dilution is assumed, i.e. C - 00, C/N -+ 0 [13]; 
(ii) memory loading is extensive, p + 03 with a ( p  - 1)/C finite; (iii) a single 
pattern, say p = 1 ,  has  non-zero correlation (the system is stable with respect to 
the growth of correlations with other patterns if sfi = 0 for p > 1);  and (iv) the 
evolution of * P ( t ) ,  + ( t )  and y ( t )  has  reached a fixed point (which does not necessarily 
imply a fixed point for the { K ( t ) } ) .  Then the average potential can be split, as with 
binary neurons [5], into a signal term, dependent on the encoded activity value q' 
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and with negligible variance, and a noise term due to uncorrelated fluctuations in the 
correlations with all other patterns. The variance of the noise term is 

(TOP)' = ~ ( C F  + Q;)ToY (8) 
where To denotes the variance of the pre-synaptic factor in (2) under P,, [2] (i.e. 
To I sP , , (q) (q /~  - l)'dq), and aF,cF are, respectively, the average and variance of 
F ( q )  under Pq (so that cF + Q: G JP,,(q)F2(q)dq). 

mL. P__^_1 _. !_ I  ._.._A:--. ... 
I ILC rweu-pu,nr C q u a b r u l l s  arc 

with 
h = F ( q ' ) i l  + ( ~ ' / Q ) s '  + b(z)  - T o p  

and ((. . .)) denotes averages over the distribution P,,(v'). 
One can compare these equations with the saddle-point equations obtained for the 

fully connected model in the corresponding limit [2]. Two features do not appear in the 
highly diluted case: the renormalization of the gain parameter and the dependence of 
the variance of the noise on the 'degree of freezing' i.e. on the correlations between the 
various configuraiions concurring in ihe aiiracior siaie of ihe fuiiy connecied neiwork. 
The second simplification occurs also in highly diluted networks of binary-threshold 
units [lo], while the first is present, of course, only with analogue units (cf [11,12]). 

The range of capacity values a for which a fixed point exists that corresponds to 
the retrieval of pattern 1 (i.e., with i' > 0) is independent of the form of b ( z ) .  This 
is a feature of the threshold-linear neuron representation, as becomes clear following 
Irllc. allalysm uaeu ,ur Irllc: 'urry C u l l l l r C b r "  LlluUel ['I. L C b  Irllc: l a b L W  U, lillt: p b b c r ' l -  

specific external stimulus s' to the correlation measuring the pattern-specific collective 
response he denoted as 

LL. .-. I...:. ..-~, P.. A L .  P ~ ~ 1 1 ~ ~  ~ ~ ~ - , ~ ,  mm T ~I LL. . . L : ~  -r *L. 

6 = s'/i' (10) 
and introduce the two signal-to-noise ratios: 

U = (i' + s ' ) / T o p  

.... :FA-- 
U l l l l V l l l l  

/U".\ 21 'p \ I T  - 
- - - l h r ) /  IOV 

specific. 
For any given distribution P,, and function F ( v ) ,  one can compute the averages 

over z and P,,: 
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where the superscript + indicates that the z-average has to be carried out only in the 
range where w + [v/(l + 6 ) ] [ l +  6(q /a )  + F(q)]  - z > 0. 

In terms of the A, the fixed-point equations reduce to 

The last two equations are the important ones: they determine the pair (w, v) of 
the retrieval solution. The first of equations (13), together with the definitions of w 
and 3 ,  just sets the absolute scale for the response, measured in x ,  z’, y and p. For 
a given value of 6 and choice of F ( q )  and P,,, eliminating g yields an equation that 
gives the maximum capacity a,: the solutions of 

= o  E , ( ~ , v ) ~ ( ~ + ~ ) ~ A ~ - o ~ A , (  c + a $ )  

TO 
are on a closed line on the w, v plane, which shrinks as a grows and disappears a t  
ac. For 01 < a, a solution to the last two of equation (13) exists if the gain g falls 
in  a certain intermediate range. The discontinuous disappearance of the solution 
implies, inter alia, that a second-order transition with 01 [4] is not a general feature 
of networks with very diluted connectivity, hut rather is peculiar to highly symmetric 
‘spin’ models. 

The way specific choices of F(q)  and P, affect the maximum capacity a, is now 
studied. The dependence on 6 was found, for the fully connected model [ 2 ] ,  to reduce 
to a rather uninteresting increase of a, with increasing (small) 6, decoupled from the 
dependence on other factors. Therefore, in the following, only the case 6 = 0 will 
be considered, corresponding to retrieval elicited only by the initial (as opposed to 
persistent) stimulation. 

While one can choose any arbitrary form for the statistical distribution of the 
encoded patterns, possibly inspired by some real neurobiological data,  the focus here 
will be on studying the effects on the capacity of the network that can arise when the 
use of graded response units allows one to retrieve graded patterns. These effects can 
be explored, a t  the most basic level, by comparing a binary with a ternary distribution. 
The storage capacity, however, turns out t o  depend most strongly on the sparseness 
of the coding scheme, rather than on the structure of its statistical distrihut,ion. To 
quantify that dependence by introducing a sparse coding parameter, the traditional, 
if somewhat confusing, notation will he adopted here [9] .  Setting the average of 7 over 
P,, to a fixes the scale of the positive variable 7, which only affects (just as the term 
b(x)) the overall scale of the response. One can turn a into a sparse coding parameter 
by also requiring that 

((‘I2)) = a (15) 

which implies To = (1 - a) / . .  The binary distribution is then 

P,,(rl) = ( 1  - a)S(v )  + 4’1 - 1 )  (16) 

with 6(z) the Dirac 6 function. A specific ternary distribution is 

P,,(v) = (1 - 2a)6(7) +a6(q  - f) + $5(7 - !). (17) 
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This particular choice examplifies well the effects seen with any ternary distribution. 
This has been shown [2], for the fully connected network, by exploring the space 
of all possible ternary distributions that satisfy (15) (and thus allow a quantitative 
comparison with the binary code of equal sparseness, equation (16)). 

Turning to the choice of the post-synaptic factor F ( q ) ,  for a straightforward com- 
parison of the storage capacity of the highly diluted model with that of the fully 
connected model it is useful to consider first the ‘covariance’ rule 

in which case up = 0 and cF = To. In this case asymmetry results only from the 
diluted connectivity, and not from a different form of the pre- and post-synaptic 
factors. In figure 1 the resulting a, is plotted as a function of U for the two Pq 
considered, together with the results for the fully connected model. The number 
of patterns that can be stored (for a given number C of modifiable synapses per 
neuron) is higher with the ternary distribution than with the binary distribution, and 
in both cases it increases roughly as [aIn(l/a)]-’ as the coding becomes sparser. The 
interesting feature of figure 1 is that as the coding becomes sparser the differences 
between the fully connected and the highly diluted models disappear, as with binary 
models [5]. The decrease in the  capacity due to the noisy correlations characterizing 
fully connected feedback networks is marked only when the coding is not sparse a t  all. 

0 

Figure 1. Storage capacity, as measured by ole, against the sparse coding parameter 
a for binary and ternary pattern distributions (16), (17) and far a covariance learning 
rule, (18). Highly diluted model: full curve (binary distribalion) and broken curve 
(ternary); fully connected model: chain curve (binary) and double-dot chain curve 
(ternary). 

The same feature appears when calculating the amount of information that can 
be stored and retrieved by the network [2]. This is lower for ternary distribut,ions (see 
figure 2), as a poorer retrieval quality more than compensates fur the higher number 
of patterns that can be stored, and for the larger amount of information each one of 
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I 
0.001 0.01 0.1 

0 
Figure 2. Information capacity I against the sparse coding parameter a. for the 
same cases and with the samt line codes ss in figure 1. 

?hem c.arries [2!: A@, differences between the f??!!y connect,ed_ and !1igh!y diluted 
models are important only when the coding is no t  sparse. 

The  fact t ha t  more ternary than binary patterns can be retrieved for equal values 
of the parameter a measuring the sparseness of the encoded representation can be 
traced to the fact tha t  the  retrieved patterns are sparser in the ternary case. To make 
tha t  clear, it  is useful to introduce a second parameter, measuring the  sparseness of 
the  representation of the retrieved information. I t  can be defined in analogy with a as 

where the  averages are over the pattern distribution and over the noise. Figure 3 
shows tha t  when the capacity is plotted against a i t  is lower in the  ternary case than 
in the binary case for essentiaiiy aii values of a, (in the  fully connected case, ior ail 
values of a,). 

Are the  above features peculiar t o  the  choice of the 'covariance' rule, equation 
(18)? The  limit of high dilution allows one to explore alternative choices for F ( q )  
[13]. It is interesting to use this freedom to t ry  to model some current neurobiological 
hypotheses on the  mechanisms of synaptic plasticity. In particular, mechanisms of 
iong-term poieniiaiion (i,rPj based on ihe activation o i  NMDA-recepiors seem i o  occur 
only when the post-synaptic membrane is very depolarized (141. This feature might 
be modelled by setting a threshold for synaptic modification (in learning a patt,ern, 
for example) which is higher than the threshold above which the post-synaptic cell 
fires. If the pattern to be learned is binary, the nonlinearity due to this additional 
threshold is not expected to make much diflerence, as the modification occurs only at 

_I: --_- L. ..-I -P LL- ..--& - . ._-_a:-  ""a +I.- rem... -r vi-\ I.-& ... ~" 6 ~ -  + ...- 
h W U  ",8C,GbC "a1"C-J U, b u r ;  ~ U " U ' 3 ~ " a , ' b , C  l a b = ,  all" b l l S  l"llll U, 1 \',, ucl ,wcr l l  lllr L W U  

values is irrelevant. New effects could be seen, instead, with a ternary pattern. To be 
specific, having in mind the distributions of (1F) and (15) let 

r:. 
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0.1 \ '. , \ 

110 binary 
ternary. 'F + a; = [ 3/a 

Figure 4 compares the number of patterns that can be stored with this model 
'NMDA' rule to that of the covariance rule, for binary and ternary patterns. It is seen 
that for binary patterns the only differences occur when the coding is not sparse, in 
which case the capacity is sensitive to whether aF = 0 or not, whereas for sparse 
coding cF dominates aF anyway. For ternary patterns a, is higher in the case of the 
NMDA rule, for almost any Q. This was expected, as this rule effectively enhances the 
sparseness of the retrieved representation. 

To summarize, the capacity of an autoassociative network of threshold-linear units, 
as measured by the number of patterns that can be retrieved (for a given number of 
modifiable synapses per unit), depends very strongly on the sparseness of the coding 
scheme. Moreover (i) with a covariance learning rule, the difference between fully 
connected and highly diluted networks vanishes in the biologically meaningful region 
of sparse codings; (ii) more ternary than binary patterns can be stored for equal values 
of the sparse coding parameter, as ternary patterns enhance the sparseness of the 
retrieved representation; (iii) learning rules nonlinear in the post-synaptic factor may 
also increase the storage capacity in conjunction with non-binary pattern distributions, 
as they also increase the sparseness of the retrieved representation. 

Another measure of performance, the amount of information that can be stored 
and retrieved, has a different dependence on the sparseness and on the structure of the 
coding (in particular, i t  decreases as ternary rather than binary patterns are used), but 
the difference with fully connected networks again vanishes for sparse codings. Finally, 
i t  should be noted that an essential ingredient of the analysis yielding the above results 
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Figure 4. Storage capacity mc against the sparse coding parameter a. in the highly 
diluted case, for the covariance and N M D A  leaming rules (18), (20). Covariance 
rule, same line codes as in figure 1: full curve (binary distribution) and long-dash 
broken curye (ternary); NMDA rule: short-dash broken curye (binary) and dotted 
curye (ternary). 

is the pre-synaptic factor used in the learning rule. The form chosen implies, from a 
neurobiological perspective, a careful balance between effects of long-term Potentiation 
and long-term depression, tuned to the average activity of the firing patterns to be 
stored. The implications of this and other aspects of biological significance for the 
study of neuronal networks in the brain will be discussed elsewhere. 
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